Model 3000-42 48 SPDT Relays 90400710

All technical data and specifications in this publication are subject to change without prior notice and do not represent a commitment on the part of Giga-tronics, Incorporated.

© 2011 Giga-tronics Incorporated. All rights reserved. Printed in the U.S.A.

Warranty

Giga-tronics Series 3000 Switching Modules are warranted against defective materials and workmanship for three years from date of shipment, or as detailed in the warranty section of this manual. Giga-tronics will, at its option, repair or replace products that are proven defective during the warranty period. This warranty DOES NOT cover damage resulting from improper use, nor workmanship other than Giga-tronics service. There is no implied warranty of fitness for a particular purpose, nor is Giga-tronics liable for any consequential damages. Specification and price change privileges are reserved by Giga-tronics.

CONTACT INFORMATION

Giga-tronics, Incorporated

4650 Norris Canyon Road

San Ramon, California 94583

Telephone: 800.726.4442 (only within the United States)

925.328.4650

Fax: 925.328.4700

On the Internet: www.gigatronics.com

Regulatory compliance information

This product complies with the essential requirements of the following applicable European Directives, and carries the CE mark accordingly.

89/336/EEC and 73/23/EEC EMC Directive and Low Voltage Directive

EN61010-1 (1993) Electrical Safety

EN61326-1 (1997) EMC – Emissions and Immunity

Manufacturer's Name: Manufacturer's Address

Giga-tronics, Incorporated 4650 Norris Canyon Road

San Ramon, California 94583

U.S.A.

Type of Equipment: Model Series Number

Switching Module 3000-42

Declaration of Conformity on file. Contact Giga-tronics at the following;

Giga-tronics, Incorporated

4650 Norris Canyon Road San Ramon, California 94583

Telephone: 800.726.4442 (only within the United States)

925.328.4650

Fax: 925.328.4700

Record of Changes to This Manual

Use the table below to maintain a permanent record of changes to this document. Corrected replacement pages are issued as Technical Publication Change Instructions (TPCI). When you are issued a TPCI, do the following:

- 1. Insert the TPCI at the front of the manual binder.
- 2. Remove the pages from the manual binder that are noted in the TPCI.
- 3. Replace the page(s) removed in the previous step with the corrected page(s).
- 4. Record the changes in the table below.

TPCI Number	TPCI Issue Date	Date Entered	Comments

	Revision History						
Revision	Description of Change	Chg Order #	Approved By				
Α	Initial Release						
В	Updated						
С	Reformatted 2/12		RCW				

Contents

Contents	6
Chapter 1 Introduction	7
1.1 Safety and Manual Conventions	7
1.1.1 Product Reference	7
1.1.2 Personal Safety Alert	7
1.1.3 Equipment Safety Alert	7
1.1.4 Notes	7
1.1.5 Electrical Safety Precautions	7
Chapter 2 Configuration Table	8
Chapter 3 Functional Description	9
Chapter 4 Theory of Operation	Error! Bookmark not defined.
Chapter 5 Block Diagram	10
Chapter 6 Controls and Indicators	Error! Bookmark not defined.
6.1 VXI LOGICAL ADDRESS	12
6.2 LEDs	12
6.2.1 "BUS" LED	12
Chapter 7 Internal Settings	13
7.1 FUSE	13
7.2 VXI _{bus} INTERRUPT LEVEL SELECTION	13
Chapter 8 Specifications	

Chapter 1 Introduction

1.1 Safety and Manual Conventions

This manual contains conventions regarding safety and equipment usage as described below.

1.1.1 Product Reference

Throughout this manual, the term "Common Core Switching Platform, Series 8800" refers to all models of within the series, unless otherwise specified.

1.1.2 Personal Safety Alert

WARNING: Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

1.1.3 Equipment Safety Alert

CAUTION: Indicates a situation which can damage or adversely affect the product or associated equipment.

1.1.4 Notes

Notes are denoted and used as follows:

NOTE: Highlights or amplifies an essential operating or maintenance procedure, practice, condition or statement.

1.1.5 Electrical Safety Precautions

Any servicing instructions are for use by service-trained personnel only. To avoid personal injury, do not perform any service unless you are qualified to do so.

For continued protections against fire hazard, replace the AC line fuse only with a fuse of the same current rating and type. Do not use repaired fuses or short circuited fuse holders.

Chapter 2 **Configuration Table**

ASSY 90400710
PL85002100
SCH85002100

Chapter 3 Functional Description

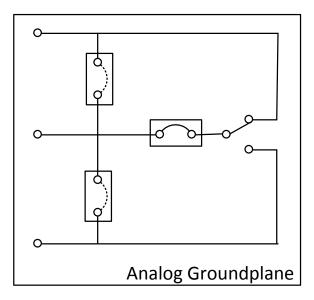
3.1 Introduction

This manual provides the necessary information for the operation and maintenance of the Model 3000-42 General Purpose VXI Switch Module.

3.2 General Description

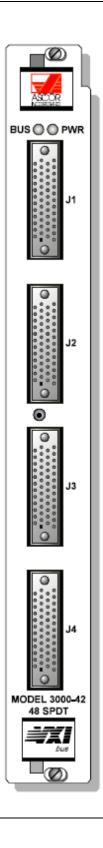
This module contains forty eight (48) 5 amp max. rated SPDT (Form C) relays. Each relay in the module is individually controlled. The module is designed to support general purpose switching which require high power. Each relay is wire to the I/O connector using 16 AWG. Wire. The front panel connectors are Burndy type MSD Positronic SMPL50MOTOLB 50 pin connectors. The Interface and mechanical construction meets the specification of the VXIbus System Specification, rev 1.2 through 1.4.

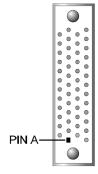
This module is a high power general purpose switch. The power relays have the following rating:


Max. switched power: 150W, 625VA 2000 VAC/192W

Max. switched current: 5 Amp

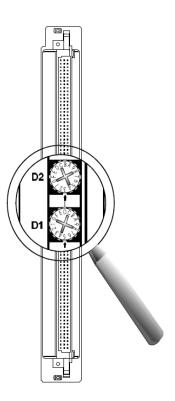
Max. switched voltage: 110 VDC, 277 VAC


The relays are UL rated at 5 A @30VDC or 5 A @ 125 VAC. The 3000-42 is a registered based VXI module. All 48 relays are controlled via three 16-bit program registers. The registers are accessed by the controller in high speed data transfer using 16 bit or 32 bit data format using ASCOR's VXImax™ technology. The state of each relay can be read by the VXI controller. See the section on programming guide.


Chapter 4 Block Diagram

Typical Channel

Chapter 5 Front Panel


Pin A = Pin 1 on Schematic

Chapter 6 Controls and Indicators

The following controls and indicators are provided to select and display the functions of the ASCOR 3000-42 Module's operating environment.

6.1 VXI LOGICAL ADDRESS

The Logical Address Switch is dual circular switches, D1 and D2 which are located at the rear of the module. The address can be set to any value between 1 and 255 (decimal) or 1 and FF (hexadecimal), (address 0 is reserved for the resource manager). However, the Module fully supports Dynamic Configuration as defined in *Section F of the VXI specification*, address 255 (FF) should be selected only if the Resource Manager also supports Dynamic Configuration.

6.2 LEDs

The following LEDs are visible at the Module's front panel to indicate the status of the module's operation:

6.2.1 "BUS" LED

This green color LED is normally off and will flash on when the module is addressed by the system.

6.2.2 "PWR" LED

This red color LED is normally on when the Module is Powered up.

Chapter 7 Internal Settings

The following items are inside the module and can be reached by removing the side cover.

7.1 FUSE

The ASCOR VXI 3000-42 uses a 10 Amp fuse in the +5 Volt line and is located on the Mother Board (MB) assembly.

7.2 VXI_{bus} INTERRUPT LEVEL SELECTION

The VXIbus interrupt level is set with three bits in the "3Eh" register.

See the section on "A16 ADDRESS SPACE REGISTER DESCRIPTION".

The interrupt level is factory set to "no interrupt".

Chapter 8 **Specifications**

SPDT relays: 48

Electrical:

Switching Voltage 277V AC, 110 V DC

Switching Current 5 Amps

Power Rating 625VA, 150 W

Life Expectancy 10,000,000 Mechanical

Contact resistance: < 0.400 ohms

Mechanical:

Thickness: 1.200 inches
Width: 10.317 inches
Length: 13.78 inches

Weight: 3 lbs.

Connectors: (J1-J4) 50 Pos, SMPL Series

Positronic SMPL50MOTOLB

Mate: 50 Pos, SGMC Series Positronic Industries, SGMC50F0E100J0

Installation Kit: Installation Kit, 89800340 , available on request

Environmental Specifications

Temperature:

Operating: 0° to 55° C Storage: -40° to 75° C

Relative Humidity:

Operating: 0 to 90% non-condensing Storage: 0 to 95% non-condensing

Chapter 10 Register Map

10.1 Memory Map

A16 Space Offset (hex)

This offset is added to the A16 Base Address of the module. The A16 Base Address for the Coaxial Switch Matrix is equal to the VXIbus logical address assigned to the Coaxial Switch Matrix shifted left six times and ORed with hex C000. These registers reside in the VXI Interface circuitry on the Motherboard (85002340).

00	VXIbus ID Register
01	Device Type Register
04	VXIbus Status/Control Register
06	Offset Register
3E	ASCOR Relay Control Register

A24 Space

The A24 Base Address of the 3000-42 can be derived from the value stored in the Offset Register (06h). To obtain the A24 base address, take the 8 most significant bits of the Offset register and map them to the 8 most significant bits of the A24 Base Address. All other bits in the A24 Base Address are set to zeroes.

A subset of the ASCOR 3000-42 Custom Registers are relay registers. See connector assignments for pin and channels assignments with associated relays.

3000-42 Relay Registers				
8000h	Relays K1-16			
8002h	Relays K17-32			
8004h	Relays K33-48			

Chapter 11 **Switch Matrix Register Map**

The following diagram shows the signal name and register assignments for the switch matrices.

DESCRIPTION: 48 SPST RELAYS

PCB NUMBER: 85002100

		MSB															LSB
MODE:	MODE:	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
32	16	(31)	(30)	(29)	(28)	(27)	(26)	(25)	(24)	(23)	(22)	(21)	(20)	(19)	(18)	(17)	(16)
8000h-																	
lower	8000h	K16	K15	K14	K13	K12	K11	K10	К9	K8	K7	К6	K5	K4	К3	K2	K1
8000h-																	
upper	8002h	K32	K31	K30	K29	K28	K27	K26	K25	K24	K23	K22	K21	K20	K19	K18	K17
8004h-																	
lower	8004h	K48	K47	K46	K45	K44	K43	K42	K41	K40	K39	K38	K37	K36	K35	K34	K33

REGISTER: 8000h MODE: 16/32 bit

FUNCTION: Relays K1-16

BIT	Connection	Relay
0	no: J1-y,, nc:J1-HH,, c:J1-CC	K1
1	no: J1-w,, nc:J1-EE,, c:J1-AA	K2
2	no: J1-x,, nc:J1-FF,, c:J1-BB	К3
3	no: J1-j,, nc:J1-u,, c:J1-p	К4
4	no: J1-f,, nc:J1-s,, c:J1-m	K5
5	no: J1-h,, nc:J1-t,, c:J1-n	К6
6	no: J1-V,, nc:J1-d,, c:J1-Z	К7
7	no: J1-T,, nc:J1-b,, c:J1-X	К8
8	no: J1-U,, nc:J1-c,, c:J1-Y	К9
9	no: J1-F,, nc:J1-R,, c:J1-L	K10
10	no: J1-D,, nc:J1-N,, c:J1J	K11
11	no: J1-E,, nc:J1-P,, c:J1-K	K12
12	no: J2-y,, nc:J2-HH,, c:J2-CC	K13
13	no: J2-w,, nc:J2-EE,, c:J2-AA	K14
14	no: J2-x,, nc:J2-FF,, c:J2-BB	K15
15	no: J2-j,, nc:J2-u,, c:J2-p	K16

REGISTER: 8000h MODE: 32 bit; BITS 16-31

REGISTER: 8002h MODE: 16 bit

FUNCTION: K17-32

BIT	Connection	Relay
0 (16)	no: J2-f; nc:J2-s; c:J2-m	K17
1 (17)	no: J2-h; nc:J2-t; c:J2-n	K18
2 (18)	no: J2-V; nc:J2-d; c:J2-Z	K19
3 (19)	no: J2-T; nc:J2-b; c:J2-X	K20
4 (20)	no: J2-U; nc:J2-c; c:J2-Y	K21
5 (21)	no: J2-F; nc:J2-R; c:J2-L	K22
6 (22)	no: J2-D; nc:J2-N; c:J2J	K23
7 (23)	no: J2-E; nc:J2-P; c:J2-K	K24
8 (24)	no: J3-y; nc:J3-HH; c:J3-CC	K25
9 (25)	no: J3-w; nc:J3-EE; c:J3-AA	K26
10 (26)	no: J3-x; nc:J3-FF; c:J3-BB	K27
11 (27)	no: J3-j; nc:J3-u; c:J3-p	K28
12 (28)	no: J3-f; nc:J3-s; c:J3-m	K29
13 (29)	no: J3-h; nc:J3-t; c:J3-n	K30
14 (30)	no: J3-V; nc:J3-d; c:J3-Z	K31
15 (31)	no: J3-T; nc:J3-b; c:J3-X	K32

REGISTER: 8000h MODE: 32 bit; BITS 16-31

REGISTER: 8004h MODE: 16 bit

FUNCTION: K33-48

BIT	Connection	Relay
0 (16)	no: J3-U; nc:J3-c; c:J3-Y	К33
1 (17)	no: J3-F; nc:J3-R; c:J3-L	K34
2 (18)	no: J3-D; nc:J3-N; c:J3J	K35
3 (19)	no: J3-E; nc:J3-P; c:J3-K	K36
4 (20)	no: J4-y; nc:J4-HH; c:J4-CC	K37
5 (21)	no: J4-w; nc:J4-EE; c:J4-AA	K38
6 (22)	no: J4-x; nc:J4-FF; c:J4-BB	K39
7 (23)	no: J4-j; nc:J4-u; c:J4-p	K40
8 (24)	no: J4-f; nc:J4-s; c:J4-m	K41
9 (25)	no: J4-h; nc:J4-t; c:J4-n	K42
10 (26)	no: J4-V; nc:J4-d; c:J4-Z	K43
11 (27)	no: J4-T; nc:J4-b; c:J4-X	K44
12 (28)	no: J4-U; nc:J4-c; c:J4-Y	K45
13 (29)	no: J4-F; nc:J4-R; c:J4-L	K46
14 (30)	no: J4-D; nc:J4-N; c:J4J	K47
15 (31)	no: J4-E; nc:J4-P; c:J4-K	K48

Chapter 12 **Programming**

12.1 Introduction

This section provides the necessary information for programming the Model 3000-42, Forty Eight (48) SPDT General Purpose VXI Switch Module.

12.2 VXI Register Based Modules

The ASCOR 3000-42 General Purpose Switch VXI Module is a register based device and supports VXIbus register maps. All controls to the 3000-42 is done through registers. All registers can be accessed with the use of slot 0 computers, host computers with VXI-MXI, or host computers with GPIB and GPIB-VXI slot 0 controllers. The 3000-42 is not a message based device and does not support VXIbus communication protocols.

12.3 ASCOR VXI Module Type

The 3000-42 has operational registers in the A16 and A24 address spaces. The registers located in the A16 address space are VXI Device Registers. They are accessed as a 16-bit word. The registers located in the A24 address space are ASCOR Module Custom registers, and they can be accessed as a 16-bit word. Additionally, since the 3000-42 is equipped with VXIMAXTM 16/32, these Custom registers can also be accessed as a 32-bit word.

12.4 VXI Device Registers

VXI Device Registers are located in the A16 address space, which can be accessed by A16 address mode. VXI Device Registers are separated into Configuration, Device Class Dependent, and Device Dependent registers. The 3000-42 provides all 4 Configuration Registers and one Device Dependent register. The rest of the A16 register space is not populated. Programming examples are shown in Sections 4.1 - 4.3 using several popular interface libraries.

12.5 ASCOR Module Custom Registers

The 3000-42 Custom registers are located in the A24 address space and they can only be accessed with A24 address mode. The method of accessing these Registers in the A24 address space is different from accessing the VXI Device Registers in the A16 address space. Therefore, care must be taken whenever accessing registers that are located in different address spaces. Programming examples are shown in Section 4.4 using several popular interface libraries.

12.6 Static and Dynamic Configurations

The 3000-42 supports both Static Configuration and Dynamic Configuration of Logical Address. In Static Configuration mode the Logical Address of the module is set and cannot be changed by the resource manager. In Dynamic Configuration mode the Logical Address is determined by the resource manager based on other devices in the system. Procedures for changing the Logical Addresses for the 3000-42 are discussed in *(Page 22) Section 5.3: How to change the 3000-42 Module's Logical Address.*

12.7 VXI Device Register Description

The ASCOR 3000-42 General Purpose Switch has VXI Device Registers located in the A16 address space. The VXI Specification defines 32 VXI Device Registers and they are all 16 bits wide. The first 4 registers are VXI Configuration Registers. The next 12 registers are VXI Device Class Dependent Registers. The last 16 registers are VXI Device Dependent Registers.

The 3000-42 supports 5 of the 32 VXI Device Registers, four in VXI Configuration Registers and one in VXI Device Dependent Register. All other registers are not supported.

VXI Device Registers for ASCOR 3000-42			
,	VXI Device Dependent Registers		
3Eh	ASCOR Control Register		
3Ch	Register Not Used		
3Ah	Register Not Used		
38h	Register Not Used		
36h	Register Not Used		
34h	Register Not Used		
32h	Register Not Used		
30h	Register Not Used		
2Eh	Register Not Used		
2Ch	Register Not Used		
2Ah	Register Not Used		
28h	Register Not Used		
26h	Register Not Used		
24h	Register Not Used		
22h	Register Not Used		
20h	Register Not Used		

VXI Device Class Dependent Registers				
1Eh	Register Not Used			
1Ch	Register Not Used			
1Ah	Register Not Used			
18h	Register Not Used			
16h	Register Not Used			
14h	Register Not Used			
12h	Register Not Used			
10h	Register Not Used			
0Eh	Register Not Used			
0Ch	Register Not Used			
0Ah	Register Not Used			
08h	Register Not Used			

	VXI Configuration Registers
06h	Offset Register
04h	Status / Control Register
02h	Device Type Register
00h	ID / Logical Address Register

12.8 VXI Configuration Registers

The first four registers in the A16 address space are Configuration Registers. Each register is 16-bits wide. They are explained below.<

Offset Description

1D Register (read) / Logical Address Register (write) A read of this

 $16\hbox{-bit register provides information about the 3000-$42 Module's}$

configuration.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Device		Address		Manufacturer											
Class		Space		ID											

(Bits 15-14) Device Class: This field indicates the classification of the VXIbus device.

00b = Memory

01b = Extended

10b = Message Based

xxx = Register Based (ASCOR VXI Module)

(Bits 13-12) Address Space: This field indicates the addressing mode(s) of the device's operational registers.

00b = A16/A24

01b = A16/A32

10b = RESERVED

11b = A16 Only

(Bits 11-0) Manufacturer ID: This field uniquely identifies the manufacturer of the device.

FB5h = ASCOR

For the <u>3000-42 Module</u>, the register should read back a value of CFB5h. A write to this 16-bit register is provided for Dynamic Configuration protocol. This register should only be written to by a resource manager. *Do not write to this register*.

Offset Description

O2h Device Type (read/write) A read of this 16-bit register provides

information about the 3000-42 Module's Device Type. This register indicates how much VMEbus memory is required by the VXI module, as well as the manufacture's unique model code.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Required				Model											
Memory				Code											

(Bits 15-12) Required Memory: This field contains the value used for determining the A24 or A32 memory space resident on the device

7h = 64K bytes in A24 Address Space

Fh = 64K bytes in A32 Address Space

(Bits 11-0) Model Code: This field contains the manufacturer's unique module identifier.

F2Bh = The ASCOR Model Code for the 3000-42. This number is different from the ASCOR Model numberFor the 3000-42 Module, the register should read back a value of 7F2Ah. A write to this 16-bit register is provided for VXIbus definition. *Do not write to this register*.

Offset Description

O4h Status Register (read) / Control Register (write) A read of this 16-bit register provides information about the 3000-42 status.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A24/A32	MODID	Device Dependent (Not used)										Rea-dy	Pas-sed	Dev. Dep.	

(Bit 15) A24/A32 Active: This bit indicates the accessibility of A24 or A32 registers.

1b = A24 or A32 Address Space Active

0b = A24 or A32 Address Space not Active (for A16 only devices)

(Bit 14) MODID: This bit indicates if the device is selected via the P2 MODID line.

1b = Device is not selected via the P2 MODID line. Used by the resource manager during Dynamic configuration.

(Bits 13-4) Device Dependent (Not used)

(Bit 3) Ready: This bit indicates if the device is ready to accept operational commands.

1b = Device is ready after power-on initialization sequence.

(Bit 2) Passed: This bit indicates if the power-on self test has successfully completed.

1b = Device does not support power-on self test (always pass)

(Bits 1-0) Device Dependent

00b = State of the corresponding bits of the Control register. For the <u>3000-42 Module<D></u>, the register should read back a value of FFFCh.

A write to this 16-bit register causes specific actions to be executed.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A24/A32	Device Dependent(Not used)													Sys-fail	Dev.Rst

- (Bit 15) A24/A32 Enable: This bit enables or disables A24 / A32 VMEbus registers.
 - 1b = Enables A24 or A32 VMEbus registers. This bit must always remain a one after being set to one by the resource manager.
 - 0b = Disables A24 or A32 VMEbus registers. This bit must always remain a zero after being cleared to zero by the resource manager. (for A16 only devices)
- (Bits 14-2) Device Dependent (Not used) (Bit 1) Sysfail Inhibit: This bit controls the device's ability to drive the SYSFAIL line.
 - 0b = Always set to zero (Sysfail not inhibited)
- (Bit 0) Device Reset: This bit controls the state of the device
 - 1b = Reset the device to power-on state.
 - 0b = Normal operational mode

06h Offset Register (read/write)

A read of the 16-bit register provides information for calculating the base address of the 3000-42 A24 operational registers.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
OffsetValue								notused							

(Bits 15-8) Offset Value: This field is used for calculating the A24 Base Address.

(Bits 7-0) Don't Care bits (Not used)

To obtain the A24 base address for the 3000-42, take the 8 most significant bits of the Offset register and map them to the 8 most significant bits of the A24 Base Address. All other bits in the A24 Base Address are set to zeroes. For more detail refer to Q&A Section: *Q: How do I calculate the 3000-42 Module's A24 Base Address?.*

A write to this 16-bit register is provided for Dynamic Configuration protocol. This register should only be written to by a resource manager. *Do not write to this register.*

VXI Device Class Dependent Registers

The ASCOR 3000-42 General Purpose Switch VXI Module does not use nor provide any of the 12 Device Class Dependent Registers.

Offset	Description
08h	Not Used
0Ah	Not Used
0Ch	Not Used
0Eh	Not Used
10h	Not Used
12h	Not Used
14h	Not Used
16h	Not Used
18h	Not Used
1Ah	Not Used
1Ch	Not Used
1Eh	Not Used

12.9 VXI Device Dependent Registers for the 3000-42

The VXI Specification defines 16 Device Dependent Registers in the A16 address space following the Device Class Dependent Register space. Each register is 16 bits wide. The first 15 registers are not used nor provided by the ASCOR 3000-42 General Purpose Switch, only the last register is used.

Offset	Description
20h	Not Used
22h	Not Used
24h	Not Used
26h	Not Used
28h	Not Used
2Ah	Not Used
2Ch	Not Used
2Eh	Not Used
30h	Not Used
32h	Not Used
34h	Not Used
36h	Not Used
38h	Not Used
3Ah	Not Used
3Ch	Not Used

3Eh Control Register (read/write)

A read of the 16-bit register provides the module control status.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										IRQ Level Select			Rvd	Reg Bit	Coil Ena

(Bits 15-6) Reserved

0h = Should always readback zeroes

(Bits 5-3) IRQ Level Select: These bits reflect the module's Interrupt Request Level

0h = No IRQ Level Selected, module Interrupt disabled.

1h = IRQ Level 1 Selected, module Interrupt enabled.

2h = IRQ Level 2 Selected, module Interrupt enabled.

3h = IRQ Level 3 Selected, module Interrupt enabled.

4h = IRQ Level 4 Selected, module Interrupt enabled.

5h = IRQ Level 5 Selected, module Interrupt enabled.

6h = IRQ Level 6 Selected, module Interrupt enabled.

7h = IRQ Level 7 Selected, module Interrupt enabled.

(Bit 2) Reserved

0h = Should always readback zero

(Bit 1) Reg Bit: This bit indicates the device's readback mode.

0b = Relay coil state readback is enabled

(Bit 0) Coil Enable: This bit indicates the device's coil driver state.

0b = Relay coil driver is enabled

1b = Relay coil driver is disabled

A write to this 16-bit register is sets the module control.

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved										IRQ			Rvd	RegBit	CoilEna
										LevelSelect				_	

(Bits 15-6) Reserved

0h = Should always be set to zeroes

(Bits 5-3) IRQ Level Select: These bits select the module's Interrupt Request Level

0h = No IRQ Level Selected, module Interrupt disabled.

1h = IRQ Level 1 Selected, module Interrupt enabled.

2h = IRQ Level 2 Selected, module Interrupt enabled.

3h = IRQ Level 3 Selected, module Interrupt enabled.

4h = IRQ Level 4 Selected, module Interrupt enabled.

5h = IRQ Level 5 Selected, module Interrupt enabled.

6h = IRQ Level 6 Selected, module Interrupt enabled.

7h = IRQ Level 7 Selected, module Interrupt enabled.

(Bit 2) Reserved

0h = Should always be set to zero

(Bit 1) Reg Bit: This bit controls the device's readback mode.

0b = Enable relay coil state readback

1b = Enable data register state readback

(Bit 0) Coil Enable: This bit controls the device's relay coil

driver.

0b = Enable relay coil driver

1b = Disable relay coil driver

12.10 ASCOR Custom Registers for the ASCOR 3000-42 Module

The ASCOR 3000-42 Custom Registers are located in the A24 Address Space. The custom registers start at offset 8000h within the A24 address space assigned by the resource manager. All 3000-42 custom registers can be accessed as a 16-bit word. Additionally, since the ASCOR 3000-42 General Purpose Switch features VXIMAX™, the custom registers can also be accessed as 32-bit words.

Offset Address in 16-Bit Mode

The 3000-42 Custom Registers can be accessed in 16-bit mode. Address offsets for the custom registers increment by two (2). Sample offsets for the ASCOR Custom Registers in 16-bit word mode:

Offset	Description
8000h	First Custom Register
8002h	Second Custom Register

Offset address in 32-Bit Mode

The 3000-42 Custom Registers can also be accessed in 32-bit mode. Address offsets for the custom registers increment by four (4). Sample offsets for the ASCOR Custom Registers in 32-bit word mode:

Offset	Description
8000h	First Custom Register
8004h	Second Custom Register
8008h	Third Custom Register

12.11 ASCOR Relay Registers

A subset of the ASCOR 3000-42 Custom Registers are relay registers. See connector assignments for pin and channels assignments with associated relays.

3000-42 Relay Registers		
8000h	Relays K1-16	
8002h	Relays K17-32	
8004h	Relays K33-48	

These registers, which are also located in the A24 Address Space, have a few unique properties:

Read / Write ASCOR Relay Registers are read / write registers. When a relay register is read the states of the coils associated to that register are returned. Normally, the states of the coils should match the values which were written. They may not match when error conditions occur or when relay coil drivers are disabled. On some rare occasions, the design of the module may not permit matching results.

12.12 Programming VXI Device Registers

The 3000-42 VXI Device Registers are read / write registers, but some device registers must be written only by the resource manager. See Section 2: VXI Device Register Description for registers reserved for the resource manager access. Since all 16 bits are programmed with a single write operation, care must be taken when values are written to the device registers in order to prevent unintended function enabling or disabling. In order to preserve the states of the functions that you do not want to alter, perform the following sequence of operations: 1. Read the device register first, 2. Modify only the bits you intend to program using the copy of the device register, 3. Write the new value back to the device register. Here are some example codes for reading the 3000-42 ID Register.

Example using National Instruments NI-VXI calls with the Logical Address of 5

```
/* C code segment for reading the ID Register using VXIinReg call.*/
int16 ret:
uint16 la
                       /* Logical Address */
               = 5;
uint16 reg
               = 0;
                       /* ID Register offset */
                       /* Read the ID Register */
uint16 value16;
                                       /* Check for read error */
ret = VXIinReg (la, reg, &value16);
if (ret << 0)
                        /* Error occurred during read. */;
/* C code segment for reading the ID Register using VXIin call. */
int16 ret;
               uint16 accessparms
                                       = 1;
/* A16, Nonprivileged data access, Motorola Byte Order */
uint32 address
                       = 0xC140;
/* LA * 0x40 0xC000 ID Register offset */
uint16 width
                       = 2:
                                       /* 16-bit word */
                       /* Read the ID Register */
uint16 value16;
ret = VXIin (accessparms, address, width, &value16);
                                                       /* Check for read error */
if (ret << 0)
                        /* Error occurred during read. */;
```

Example using VXIplug&play VISA calls

```
/* C code segment for reading the ID Register using Viln16 call. */

ViStatus as3xxx_status;

ViSession vi; /* vi from previous call to as3xxx_init */

ViUInt16 space = VI_A16_SPACE;

ViBusAddress offset = 0x00; /* Offset of the ID Register */

ViUInt16 val16; /* Read the ID Register */

as3xxx_status = viln16 (vi, space, offset, &val16); /* Check for read error */

if (as3xxx_status << VI_SUCCESS) /* Error occurred during read. */;
```

Resetting ASCOR VXI Module

The ASCOR 3000-42 General Purpose Switch can be reset to a power up state by setting the Device Reset bit of the Status / Control (04h) register in the VXI Configuration Registers. Care must be taken when writing to this register since all bits other than the Device Reset bit must not be changed. In order to preserve the states of all other bits, perform the following sequence of operations:

- 1. Read the Status / Control register,
- 2. Set only the Device Reset bit,
- 3. Write the modified word to the Status / Control register. After the reset operation, the module must be brought back to a normal operational mode in order for the relays to close. The 3000-42 can be set back to the normal operation mode by clearing the Device Reset bit without modifying any other bits. Here are some example codes for resetting the 3000-42.

Example using National Instruments NI-VXI calls with the Logical Address of 5

```
/* C code segment for resetting the ASCOR VXI module using VXIinReg and VXIoutReg calls */
        int16 ret;
                        uint16 la
                                                /* Logical Address */
        uint16 reg
                        = 4;
                                /* Status / Control register offset */
        uint16 value16;
                               /* Read the Status / Control Register */
        ret = VXIinReg (la, reg, &value16);
                                                /* Check for read error */
                                /* Error occurred during read. */;
        if (ret << 0)
        /* Set the Device Reset bit in the copy of the Status / Control Register */
        value16 |= 0x0001;
                               /* Write to the Status / Control Register */
        ret = VXIoutReg (la, reg, value16);
                                               /* Check for write error */
        if (ret << 0)
                               /* Error occurred during write. */;
/* Bring the module back to the normal operation by
        clearing the Device Reset bit in the copy of the Status / Control Register */
        value16 &= 0xFFFE;
        /* Write to the Status / Control Register */
```

```
/* Check for write error */
ret = VXIoutReg (la, reg, value16);
                       /* Error occurred during write. */;
if (ret << 0)
/* C code segment for resetting the ASCOR VXI module using VXIin and VXIout calls */
int16
        ret;
uint16 accessparms
                        = 1;
/* A16, Nonprivileged data access, Motorola Byte Order */
uint32 address
                        = 0xC144;
/* LA * 0x40 0xC000 Control / Status Register */
uint16 width
                        = 2;
                                        /* Word */
                                                /* Read the Status / Control Register */
uint16 value16;
                       uint32 value32;
ret = VXIin (accessparms, address, width, &value16);
                                                        /* Check for read error */
                        /* Error occurred during read. */;
if (ret << 0)
/* Set the Device Reset bit in the copy of the Status / Control Register */
                        value32 |= 0x0001;
                                                /* Write to the Status / Control Register */
value32 = value16;
        ret = VXIout (accessparms, address, width, value32);
                                                               /* Check for write error */
if (ret << 0)
                       /* Error occurred during write. */;
/* Bring the module back to the normal operation by
clearing the Device Reset bit in the copy of the Status / Control Register */
value32 &= 0xFFFE;
                       /* Write to the Status / Control Register */
ret = VXIout (accessparms, address, width, value32);
                                                        /* Check for write error */
                        /* Error occurred during write. */;
if (ret << 0)
```

Example using VXIplug&play VISA calls

```
/* C code segment for resetting the ASCOR VXI Module */
       ViStatus
                               as3xxx status;
       ViSession
                       vi:
                                       /* vi from previous call to as3xxx init */
       ViUInt16
                               space = VI A16 SPACE;
       ViBusAddress offset = 0x04; /* Offset of the Status / Control Register */
                               /* Read the Status / Control Register */ as3xxx_status = viln16 (vi,
               value16;
       space, offset, &value16);
                                       /* Check for read error */
                                                                       if (as3xxx status <<
       VI SUCCESS)
                               /* Error occurred during read. */;
       /* Set the Device Reset bit in the copy of the Status / Control Register */
       value16 |= 0x0001;
                               /* Write to the Status / Control Register */
        as3xxx status = viOut16 (vi, space, offset, value16);
                                                               /* Check for write error */
                                                       /* Error occurred during write. */;
       if (as3xxx status << VI SUCCESS)
       /* Bring the module back to the normal operation by
                                                                 clearing the Device Reset bit in the
       copy of the Status / Control Register */
       value16 &= 0xFFFE;
                               /* Write to the Status / Control Register */
        as3xxx status = viOut16 (vi, space, offset, value16);
                                                                /* Check for write error */
        if (as3xxx status << VI SUCCESS)
                                                       /* Error occurred during write. */;
```

12.13 Programming the ASCOR 3000-42 Custom Registers

The ASCOR 3000-42 Custom Registers can be accessed through the registers in the A24 address space. Since all 16 or 32 bits are programmed with a single write operation, care must be taken when values are written to these registers in order to prevent unintended side effects. To preserve the configuration that you do not want to program, perform the following sequence of operations:

- 1. Read the register first,
- 2. Modify only the bits you intend to program using the copy of the register,
- 3. Write the new value back to the register. Refer to Section 1 for the definition of the custom registers found in the 3000-42.All 3000-42 Custom Registers are located in the A24 address space. A unique A24 base address is assigned by the resource manager to the A24 module in the system. The assignment of the base address is performed every time when the resource manager is executed. The 3000-42 Custom Registers start at an offset from the module's assigned A24 base address. The sum of the two values, A24 base address and the custom register offset, gives the unique custom register address. Some interface library calls require the A24 custom register address. VXIplug&play library calls require only the offset of the register from the base address. The A24 base address is added to the offset internally. Here are some example codes for writing to the 3000-42 custom registers.

Example using National Instruments NI-VXI calls

```
/* C code segment for writing the value 0x1000 to the first custom register,
       assume A24 Base Address of 200000h */
       int16
               ret;
                                       /* A24, Nonprivileged data access, Motorola Byte Order */
       uint16 accessparms = 2;
               uint32 address;
                                       uint16 width
                                                               = 2;
                                                                      /* Word */
       uint32 value32;
                               address = 0x208000;
       /* A24 Base Address offset of the first custom register */
       value32 = 0x1000;
       /* Value to write to the first custom register */
       /* Write to the first custom register */
       ret = VXIout (accessparms, address, width, value32);
                                                              /* Check for write error */
                               /* Error occurred during write. */;
       if (ret << 0)
```

Example using VXIplug&play VISA calls

```
/* C code segment for writing the value 0x1000 to the first custom register */
       ViStatus
                               as3xxx_status;
       ViSession
                       vi;
        ViUInt16
                               space = VI A24 SPACE;
                                               /* Offset of the first custom register */
       ViBusAddress offset = 0x8000;
       ViUInt16
                                value16;
                                               value16 = 0x1000;
       /* Value to write to the first custom register */
       /* Write to the first custom register */
       as3xxx_status = viOut16 (vi, space, offset, value16);
                                                               /* Check for write error */
       if (as3xxx_status << VI_SUCCESS)
                                                       /* Error occurred during write. */;
```

Q: How do I calculate the 3000-42 Module's A16 Base Address?

A: The A16 Base Address of the 3000-42 is derived from the Logical Address.

The formula for calculating the A16 Base Address is as follows:

A16 Base Address = C000h LA x 40h where LA is the Logical Address of a module

Logical Address	A16 Base Address
1	C040h
2	C080h
3	C0C0h
4	C100h
5	C140h

If the module's Logical Address is 5 then A16 Base Address is C140h and Device Register addresses are as follows:

Address	Device Registers
C140h	ID Register / Logical Address Register
C142h	Device Type Register
C144h	Status / Control Register
C146h	Offset Register
C17Eh	Relay Control Register

If the module's Logical Address is 8 then A16 Base Address is C200h and Device Register addresses are as follows:

Address	Device Registers
C200h	ID Register / Logical Address Register
C202h	Device Type Register
C204h	Status / Control Register
C206h	Offset Register
C23Eh	Relay Control Register

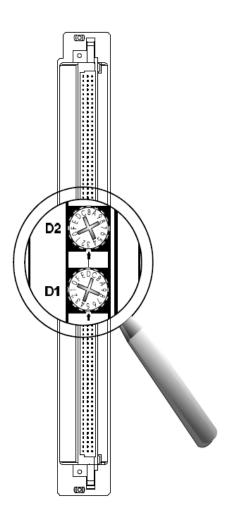
Q: How do I calculate the 3000-42 Module's A24 Base Address?

A: The A24 Base Address of the 3000-42 can be derived from the value stored in the Offset Register (04h). To obtain the A24 base address, take the 8 most significant bits of the Offset register and map them to the 8 most significant bits of the A24 Base Address. All other bits in the A24 Base Address are set to zeroes.

Following are some examples of the Offset Register Values and the corresponding A24 Base Addresses.

Offset RegisterValues	Derived A24 BaseAddresses
20XXh	200000h
30XXh	300000h
70XXh	700000h

Alternatively, A24 Base Address of a device can be obtained by issuing a library call.


Example using National Instruments NI-VXI calls with the Logical Address of 5

```
/* C code segment for obtaining the device's A24 Base Address */
int16 ret;
uint16 la = 5; /* Logical Address */
uint16 field = 12; /* Base of A24/A32 address space */
uint32 baseA24; /* Get the A24 Base Address */
ret = GetDevInfo (la, field, &baseA24); /* Check for function error */
if (ret << 0) /* Error occurred during GetDevInfo. */;
```

Q: How do I Change the 3000-42 Module's Logical Address?

A: The Logical Address of ASCOR 3000-42 Module can be changed manually using the two rotary switches located in the back of the module. These rotary switches represent the high and low hex digits of an eight bit Logical Address. Orient the 3000-42 module as shown in the illustration below. The rotary switch on the bottom (D1) represents the high hex digit and the rotary switch on the top (D2) represents the low hex digit. Each rotary switch can be turned clockwise or counter-clockwise. Turn each rotary switch until the desired hex digit is aligned with the small white dot on the left side of the rotary switch casing. Valid Logical Addresses for Static Configuration are between 01h (1) and FEh (254). The Logical Address of 00h (0) is reserved for Slot 0 computer. Do not set the Logical Address of ASCOR VXI Modules to 0. The example below shows the rotary switch settings for a 3000-42 Logical Address of 53.

ASCOR VXI Modules also supports Dynamic Configuration methods of assigning Logical Addresses. In order for Dynamic Configuration to work properly the resource manager software must also support Dynamic Configuration. Set the rotary switches on the modules to FFh (255) so that the resource manager software can dynamically assign Logical Addresses to ASCOR VXI Modules.

